InterviewSolution
Saved Bookmarks
| 1. |
If \(2{\cos ^2}θ - 5\cos θ + 2 = 0\), 0º |
|
Answer» Correct Answer - Option 1 : \(\frac{{\sqrt 3 }}{3}\) Given: 2cos2θ – 5cosθ + 2 = 0 Formula used: Cos60° = 1/2 Cosec60° = 2/(√3) Cot60° = 1/√3 Calculation: 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ(cosθ – 2) –1(cosθ – 2) = 0 ⇒ (cosθ – 2)(2cosθ – 1) = 0 ⇒ (cosθ – 2) = 0 or, (2cosθ – 1) = 0 ⇒ cosθ = 2 or, cosθ = 1/2 0º < θ < 90º So, cosθ = 1/2 = cos60° ⇒ θ = 60° 1/(cosecθ + cotθ) = 1/(cosec60° + cot60°) ⇒ 1/[2/(√3) + 1/√3] ⇒ √3/3 ∴ The value of 1/(cosecθ + cotθ) is √3/3. |
|