1.

If 2 × cos(A + B) = 2 × sin(A - B) = 1, find the value of A and B.1. A = 45°  and B = 15° 2. A = 90° and B = 0° 3. A = 30° and B = 60° 4. A = 15°  and B = 45°

Answer» Correct Answer - Option 1 : A = 45°  and B = 15° 

Given

2 × cos(A + B) = 2 × sin(A - B) = 1

Concept

Here all three identities are equal to each other so, take first any two identities then the other two identities.

Calculation

Let 2 × cos(A + B) = 1

⇒ cos(A + B) = (1/2)

⇒  cos(A + B) = cos 60° 

⇒ A + B = 60°     ....(1)

Now,

Let 2 × sin(A - B) = 1

⇒ sin(A - B) = (1/2)

⇒ sin(A - B) = sin30° 

⇒ A - B = 30°     ....(2)

Now, add equation (1) and (2)

⇒ (A + B) + (A - B) = 60° + 30° 

⇒ 2A = 90° 

⇒ A = (90°/2)

⇒ A = 45° 

Now put the value of A in equation (1)

⇒ 45° + B = 60° 

⇒ B = 60° - 45° 

⇒ B = 15° 

∴ A = 45° and B = 15° 



Discussion

No Comment Found

Related InterviewSolutions