

InterviewSolution
Saved Bookmarks
1. |
If `[{:(2alpha+1," "3beta),(0,beta^(2)-5beta):}]=[{:(beta+3,beta^(2)+2),(0,-6):}]` find the equation whose roots are alpha and beta. |
Answer» the given matrices wil be equal, iff `2alpha+1=alpha+3impliesalpha=2` `3beta=beta^(2)+2impliesbeta^(2)-3beta+2=0` :. `beta=1,2 and beta^(2) -5beta=-6` implies ` beta^(2) -5beta+6=0` :. `beta=2,3` from Eqs. (i) and (ii), we get `beta=2` rArr `alpha=2, beta=2` `therefore` "Required equation is `x^(2)-(2+2)x+2.2=0` `x^(2) -4x+4=0` |
|