

InterviewSolution
1. |
If (2n + 1) + (2n + 3) + (2n + 5) + ...... + (2n + 47) = 5280, then what is the value of 1 + 2 + 3 + .... + n? |
Answer» Calculation: (2n + 1) + (2n + 3) + (2n + 5) + ...... + (2n + 47) = 5280 (2n + 5) – (2n + 3) = 2 (2n + 3) – (2n + 1) = 2 On the Left Hand Side, (2n + 1) + (2n + 3) + (2n + 5) + ...... + (2n + 47) is an arithmetic progression with common difference 2 First term of the arithmetic progression is (2n + 1) and the last term is (2n + 47) Let the number of terms be T (2n + 47) = (2n + 1) + (T – 1)2 ⇒ 2T – 2 = 2n + 47 – 2n – 1 ⇒ 2T = 46 + 2 ⇒ 2T = 48 ⇒ T = 24 Number of terms of the arithmetic progression = 24 Sum of arithmetic progression = 24/2[(2n + 1) + (2n + 1) + (24 – 1)2] ⇒ 24/2[(2n + 1) + (2n + 1) + (24 – 1)2] = 5280 ⇒ 24/2[4n + 2 + 23 × 2] = 5280 ⇒ 24/2[4n + 48] = 5280 ⇒ 48[n + 12] = 5280 ⇒ n + 12 = 110 ⇒ n = 110 – 12 ⇒ n = 98 The value of 1 + 2 + 3 + .... + n = 1 + 2 + 3 + .... + 98 ⇒ 98(98 + 1)/2 ⇒ 49 × 99 ⇒ 4851 ∴ The value of 1 + 2 + 3 + .... + n is 4851 Formula Used: nth term of an arithmetic progression = a + (n – 1)d Here, n = Number of terms , a = First term, d = Common difference (Difference between two consecutive terms) Sum of an arithmetic progression = n/2[a + a + (n – 1)d] Sum of first n natural numbers = n(n + 1)/2 |
|