1.

If `(3pi)/(2) lt alpha lt 2 pi`, find the modulus and argument of `(1 - cos 2 alpha) + i sin 2 alpha `.

Answer» `z = (1-cos2 alpha)+ i sin 2alpha`
`= 2sin^(2) alpha + i (2sin alpha cos alpha)`
`=2 sin alpha(sin alpha + i cos alpha)`
`=-2 sin alpha (-sin alpha - i cos alpha)`
`=-2 sin alpha (cos((3pi)/(2)-alpha)+ sin ((3pi)/(2)-alpha))`
Thus, `|z| = - s sin alpha`
Alos, `(3pi)/(2) - alpha in ((-pi)/(2),0)`
Therefore, z lies in the fourth quadrant.
`therefore arg(z) = (3pi)/(2) =- alpha`


Discussion

No Comment Found

Related InterviewSolutions