InterviewSolution
Saved Bookmarks
| 1. |
If 4 – 2sin2 θ – 5cos θ = 0, 0° |
|
Answer» Correct Answer - Option 3 : \(\dfrac{1+2\sqrt{3}}{2}\) Given: 4 – 2sin2 θ – 5cos θ = 0 Identity used: sin2θ = 1 – cos2θ Calculation: 4 – 2sin2 θ – 5cos θ = 0 ⇒ 4 – 2 × (1 – cos2θ) – 5cosθ = 0 ⇒ 4 – 2 + 2cos2θ – 5cosθ = 0 ⇒ 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ × (cosθ – 2) – 1 × (cosθ – 2) = 0 ⇒ (2cosθ – 1) × (cosθ – 2) = 0 ⇒ cosθ = 1/2 and cosθ = 2 Rejecting cosθ = 2 as 0° < θ < 90° So, cosθ will be 1/2 ⇒ θ = 60° The value of cos θ + tan θ = cos60° + tan60° ⇒ (1/2) + √3 ∴ The value of cos θ + tan θ is \(\dfrac{1+2\sqrt{3}}{2}\) |
|