InterviewSolution
Saved Bookmarks
| 1. |
If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°) 1. \(\sqrt{2}\)2. \(\sqrt{6}\)3. \(\dfrac{1}{\sqrt{3}}\)4. 1 |
|
Answer» Correct Answer - Option 2 : \(\sqrt{6}\) Given 4 cos2 θ - 3 sin2 θ + 2 = 0 Formula: sin2θ + cos2θ = 1 tan2θ = sin2θ/cos2θ Calculation: 4 cos2θ - 3 sin2θ + 2 = 0 ⇒ 4 cos2θ - 3 (1 - cos2θ) + 2 = 0 ⇒ 4 cos2θ - 3 + 3 cos2θ + 2 = 0 ⇒ 7 cos2θ - 1 = 0 ⇒ 7 cos2θ = 1 ⇒ cos2θ = 1/7 sin2θ + cos2θ = 1 ⇒ sin2θ = 1 - 1/7 ⇒ sin2θ = 6/7 Now, tan2θ = sin2θ/cos2θ ⇒ tan2θ = (6/7)/(1/7) ⇒ tan2θ = 6 ∴ tanθ = √6 |
|