InterviewSolution
Saved Bookmarks
| 1. |
If 4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan2 24 = y/2, then the value of y is: 1. 82. -43. 44. -8 |
|
Answer» Correct Answer - Option 4 : -8 Given: 4(cosec2 57 - tan2 33) - cos 90 + y × tan2 66 × tan2 24 = y/2 Formula used: (i) cosec(90 - θ) = secθ (ii) tan(90 - θ) = cotθ (iii) sec2θ - tan2θ = 1 (iv) tanθ = 1/cotθ Calculations: 4(cosec2 (90 - 33) - tan2 33) - cos 90 + y × tan2 66 × tan2 (90 - 66) = y/2 ⇒ 4(sec2 57 - tan2 33) - cos 90 + y × tan2 66 × cot2 66 = y/2 ⇒ 4 × 1 - 0 + y × tan2 66 × 1/tan2 66 = y/2 ⇒ 4 + y = y/2 ⇒ y - y/2 = -4 ⇒ y/2 = -4 ⇒ y = -8 ∴ The value of y is -8. |
|