1.

If A = {1, 2, 3}, B = {4}, c = {5}, then verify that : i. A x ( B ∪ C) = (A x B) ∪ (A x C) ii. A x (B ∩ C) = (A x B) ∩ (A x C) iii. A x (B – C) = (A x B) – (A x C).

Answer»

Given,

A = {1, 2, 3}, B = {4} and C = {5} 

(i) To prove : A × (B ∪ C) = (A × B) ∪ (A × C) 

LHS : (B ∪ C) = {4, 5} 

Therefore, 

A × (B ∪ C) = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)} 

RHS : (A × B) = {(1, 4), (2, 4), (3, 4)} 

(A × C) = {(1, 5), (2, 5), (3, 5)} 

(A × B) ∪ (A × C) = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)} 

∴ LHS = RHS 

(ii) To prove: A × (B ∩ C) = (A × B) ∩ (A × C) 

LHS : (B ∩ C) = ∅ 

(No common element) 

A × (B ∩ C) = ∅ 

RHS : (A × B) = {(1, 4), (2, 4), (3, 4)} 

(A × C) = {(1, 5), (2, 5), (3, 5)} 

(A × B) ∩ (A × C) = ∅ 

∴ LHS = RHS 

(iii) To prove : A × (B − C) = (A × B) − (A × C) 

LHS : (B − C) = ∅ 

A × (B − C) = ∅ 

RHS : (A × B) = {(1, 4), (2, 4), (3, 4)} 

(A × C) = {(1, 5), (2, 5), (3, 5)} 

(A × B) − (A × C) =∅ 

∴ LHS = RHS



Discussion

No Comment Found

Related InterviewSolutions