

InterviewSolution
Saved Bookmarks
1. |
If `a_(1),a_(2),a_(3),".....",a_(n)` are in HP, than prove that `a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)` |
Answer» Given, `a_(1),a_(2),a_(3),"…",a_(n)` are in HP. ` therefore (1)/a_(1),(1)/a_(2),(1)/a_(3),"....."(1)/a_(n)` are in AP. Let D be the common difference of the AP, than `(1)/a_(2)-(1)/a_(1)=(1)/a_(3)-(1)/a_(2)=(1)/a_(4)-(1)/a_(3)="....."=(1)/a_(n)-(1)/a_(n-1)=D` ` implies (a_(1)-a_(2))/(a_(1)a_(2))=(a_(2)-a_(3))/(a_(2)a_(3))=(a_(3)-a_(4))/(a_(3)a_(4))="....."=(a_(n-1)-a_(n))/(a_(n-1)a_(n))=D` ` implies a_(1)a_(2)=(a_(1)-a_(2))/(D),a_(2)a_(3)=(a_(2)-a_(3))/(D),a_(3)a_(4)=(a_(3)-a_(4))/(D),".....",a_(n-1)-a_(n)=(a_(n-1)a_(n))/(D)` On adding all such expressions, we get ` a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)-a_(n)=(a_(1)-a_(n))/(D)=(a_(1)a_(n))/(D)((1)/a_(n)-(1)/a_(1))` ` (a_(1)a_(n))/(D)[(1)/a_(1)+(n-1)D-(1)/(a_(1))]=(n-1)a_(1)a_(n)` Hence, ` a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+ a_(n-1)a_(n)=(n-1)a_(1)a_(n)` |
|