InterviewSolution
| 1. |
If A = 1 + ra + r2a + r3a + ..... ∞, B = 1 + rb + r2b + r3b + ..... ∞, then show that \(\frac{a}{b}\) = \(\text{log}_{\big(\frac{B-1}{B}\big)}\)\({\big(\frac{A-1}{A}\big)}\). |
|
Answer» A = 1 + ra + r2a + r3a + ..... ∞ ⇒ A = \(\frac{a}{1-r^a}\) \(\big(\because\,S_\infty = \frac{a}{1-r}.\text{Here}\,a=1, \text{common ratio}=r^a\big)\) ⇒ 1 - ra = \(\frac{1}{A}\) ⇒ ra = 1 - \(\frac{1}{A}\)= \(\frac{A-1}{A}\) ⇒ a log r = log \(\big(\frac{A-1}{A}\big)\) ⇒ a = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\,r}\) .....(i) Now, B = 1 + rb + r2b + r3b + .... ∞ ⇒ B = \(\frac{a}{1-r^b}\) ⇒ 1 - rb = \(\frac{1}{B}\) ⇒ rb = 1 - \(\frac{1}{B}\)= \(\frac{B-1}{B}\) ⇒ log rb = log \(\big(\frac{B-1}{B}\big)\) ⇒ b log r = log \(\big(\frac{B-1}{B}\big)\) ⇒ b = \(\frac{\text{log}\big(\frac{B-1}{B}\big)}{\text{log}\,r}\) .....(ii) ∴ \(\frac{a}{b}\) = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\,r}\) x \(\frac{\text{log}\,r}{\text{log}\big(\frac{B-1}{B}\big)}\) (From (i) and (ii)) ⇒ \(\frac{a}{b}\) = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\big(\frac{B-1}{B}\big)}\) = \(\text{log}_{\big(\frac{B-1}{B}\big)}\)\({\big(\frac{A-1}{A}\big)}\). \(\bigg[\because\frac{\text{log}\,a}{\text{log}\,b}\) = logb a\(\bigg].\) |
|