InterviewSolution
Saved Bookmarks
| 1. |
If `A=[(2,-3),(3,5)]` then find `A^(-1)` by adjoint method. |
|
Answer» Given, `A=[(2,-3),(3,5)]` `|A|=2xx5-(-3)(3)=10+9=19!=0` `:.A^(-1)` exists. To find adjoint of A : `M_(11)=5, A_(11)=(-1)^(2)*5=5` `M_(12)=3, A_(12)=(-1)^(3)*3=-3` `M_(21)=-3, A_(21)=(-1)^(3)*(-3)=3` `M_(22)=2, A_(22)=(-1)^(4)*(2)=2` `:.` Matrix of cofactors is `[(5,-3),(3,2)]` `:.` Adj. `A=[(5,3),(-3,2)]` We have, `A^(-1)=(1)/(|A|)*`Adj. `A=(1)/(19)[(5,3)/(-3,2)]` |
|