InterviewSolution
Saved Bookmarks
| 1. |
A uniform solid sphere has a radius 0.1 m and density ` 6 xx 10 ^ 3 ` kg/ `m^ 3 ` . Find the moment of intertia about a tangent to its surface. |
|
Answer» Given : Radius of solid sphere (R ) ` = 0.1 m` Density ( ` rho ` ) = ` 6 xx 10 ^ 3 kg // m^ 3 ` Mass of the sphere (M ) = volume ` xx ` density ` = ( 4)/(3) pi R^ 3 rho ` Moment of inertia about a tangent to its surface, ` I = (2 ) /( 5 ) MR ^ 2 + MR ^ 2 ` [ Using parallel axis theorem ] ` I = ( 7 )/( 5 ) MR^ 2 ` ` = ( 7 ) /( 5 ) xx (4 )/( 3) xx pi xx R^3 xx rho xx R^ 2 ` ` = ( 28 xx 3.14 xx 6 xx 10 ^ 3 xx ( 0.1 ) ^ 5 ) /( 15 ) ` ` therefore I = 0.3517 kg m^ 2 ` |
|