

InterviewSolution
1. |
If A (3, 2), C (- 3, 2) and D(k, - 1) are the vertices of the quadrilateral ABCD where |AD| = |CD| and the area of Δ ABC is 9 sq. unit. Then the area of quadrilateral ABCD will be:1. 15 sq. unit2. 12 sq. unit3. 36 sq. unit4. 18 sq. unit |
Answer» Correct Answer - Option 4 : 18 sq. unit Concept: 1. Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\) 2. Distance formula: A(x, y) and B(a, b) be any two points, by distance formula, \(\rm AB = \sqrt {(x - a)^2 + (y - b)^2}\) 3. (a + b)2 = a2 + 2ab + b2 4. (a - b)2 = a2 - 2ab + b2 Calculation: Given that, coordinates of point A, C and D are (3, 2), (- 3, 2) and (k, -1) respectively. Area of Δ ABC = 9 sq. unit According to the question, |AD| = |CD| Using distance formula, \(\sqrt {(3 - k)^2 + (2 + 1)^2}\ =\ \sqrt {(-3 \ -\ k)^2 + (2\ +\ 1)^2}\) Taking square of both side ⇒ (3 - k)2 + 9 = (3 + k)2 + 9 ⇒ 3 + k2 - 6k = 9 + k2 + 6k ⇒ 12k = 0 ⇒ k = 0 Therefore, A (3, 2), C (- 3, 2) and D (0, -1) ⇒ Area of Δ ACD = \(\)\(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\) ⇒ Area of Δ ACD = 9 sq unit ⇒ Area of quadilateral ABCD = Area of ΔABC + Area of Δ ACD ⇒ (9 + 9) sq. units = 18 sq. units Hence, option 4 is the correct answer. |
|