| 1. |
If a=3 d=4 sn =406 find the value n |
|
Answer» ★ Given that,
★ To find,
By using sum of n terms of an AP... ☯ Sn = n/2 [ 2a + (n - 1)d ] ➡ 406 = n/2 [ 2(3) + (n - 1)4 ] ➡ 406 × 2 = n [ 6 + 4N - 4 ] ➡ 812 = n [ 2 + 4n ] ➡ 812 = 2n + 4n² ➡ 4n² + 2n - 812 = 0 ➡ 2[2n² + n - 406 ] = 0 ➡ 2n² + n - 406 = 0/2 ➡ 2n² + n - 406 = 0 ➡ 2n² + 29n - 28n - 406 = 0 ➡ n(2n + 29) - 14(2n + 29) = 0 ➡ (n - 14) (2n + 29) = 0 ➡ n - 14 = 0 ; 2n + 29 = 0 ➡ n = 0 + 14 ; 2n = 0 - 29 ➡ n = 14 ; 2n = - 29 ➡ n = 14 ; n = -29/2 Values of n can't be in fractions.So, n will be 14. ★ Verification : Substitute the value of n in the formula. ➡ S14 = 14/2 [ 2(3) + (14 - 1)(4) ] ➡ S14 = 7 [ 6 + 13(4) ] ➡ S14 = 7 [ 6 + 52 ] ➡ S14 = 7 [ 58 ] ➡ S14 = 406. Hence, it is verified... Step-by-step EXPLANATION: |
|