

InterviewSolution
Saved Bookmarks
1. |
If `A= [[3,2,2],[2,4,1],[-2,-4,-1]] ` and X,Y are two non-zero column vectors such that `AX=lambda X, AY=muY , lambdanemu, ` find angle between X and Y. |
Answer» `because AX = lambda X rArr (A-lambdaI) X = 0` `because = X ne 0` `therefore det (A-lambdaI)=0` `rArr [[3-lambda,2,2],[2, 4-lambda,1],[-2, -4,-1-lambda]]=0` Applying `R-(3) rarr R_(3) + R_(2)`, then ` [[3-lambda,2,2],[2, 4-lambda,1],[0, -lambda,-lambda]]=0` Applying `C_(2 ) rarr C_(2) C_(3),` then `rArr [[3-lambda,0,2],[2, 3-lambda,1],[0, 0,-lambda]]=0` `rArr -lambda (3-lambda )^(2) = 0` ` rArr lambda = 0,3` It is clear that `lambda = 0 mu = 3` for `lambda = 0, AX = 0 rArr [[3,2,2],[2,4,1],[-2,-4,-1]][[x],[y],[z]] = [[0],[0],[0]]` `rArr 3x+ 2y+ 2z = 0 and 2x + 4y + z=0` `therefore x/-5= y/1 = z/8` So, `X= [[-6],[1],[8]]` For` mu= 3, (A-3I) Y=0` ` rArr [[0,2,2],[2,1,1],[-2,-4,-4]][[alpha],[beta],[gamma]] = [[0],[0],[0]]` `rArr 0.alpha +2beta + 2gamma = 0and 2 alpha + beta + gamma = 0` `therefore alpha/0 = beta / 4 = gamma/(-4)` `rArr alpha/0 = beta / -1= gamma/1` So, `Y=[[0],[-1],[1]]` If `theta` angle between X and Y, then `cos theta = (0.(-6)+(-1)cdot 1 + 1cdot8)/(sqrt((0+1+1))sqrt(36+1 +64) ) = 7/sqrt(202)` |
|