1.

If A = [aij] is a skew-symmetric matrix, then write the value of \(\displaystyle\sum_{i}a_{ij}.\)

Answer»

Given : 

A = [aij] is a skew – symmetric matrix

⇒ aij = - aji …(i)

[for all values of i, j]

For diagonal elements,

⇒ aii = - aii 

[for all values of i] 

⇒ aii + aii = 0 

⇒ 2aii = 0 

⇒ aii = 0 …(ii)

Now,

\(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=\) a11 + a12 + a13...+ a21 + a22 + a23 ... + a31 + a32 + a33 ...

= 0 + a12 + a13 +...+ (- a12) +0 + a23 +... + (-a13) + (-a23) + 0...

[from (i) and (ii)]

= 0 

Thus,

 \(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=0\) 

Hence Proved.



Discussion

No Comment Found

Related InterviewSolutions