

InterviewSolution
Saved Bookmarks
1. |
If A = [aij] is a skew-symmetric matrix, then write the value of \(\displaystyle\sum_{i}a_{ij}.\) |
Answer» Given : A = [aij] is a skew – symmetric matrix ⇒ aij = - aji …(i) [for all values of i, j] For diagonal elements, ⇒ aii = - aii [for all values of i] ⇒ aii + aii = 0 ⇒ 2aii = 0 ⇒ aii = 0 …(ii) Now, \(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=\) a11 + a12 + a13...+ a21 + a22 + a23 ... + a31 + a32 + a33 ... = 0 + a12 + a13 +...+ (- a12) +0 + a23 +... + (-a13) + (-a23) + 0... [from (i) and (ii)] = 0 Thus, \(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=0\) Hence Proved. |
|