

InterviewSolution
Saved Bookmarks
1. |
If `A=((alpha,beta),(gamma,-alpha))`. such that `A^2=I`. prove that `1-alpha^2-beta gamma=0` |
Answer» Here, `A = [[alpha, beta],[gamma, -alpha]]` We are given, `A^2 = I` `:. [[alpha, beta],[gamma, -alpha]] [[alpha, beta],[gamma, -alpha]] = [[1,0],[0,1]]` `=>[[alpha^2+betagamma, alphabeta -alphabeta],[gammaalpha-gammaalpha, betagamma+alpha^2]] = [[1,0],[0,1]]` `=> alpha^2+betagamma = 1` `=>1-alpha^2-betagamma = 0` |
|