1.

If `A=((alpha,beta),(gamma,-alpha))`. such that `A^2=I`. prove that `1-alpha^2-beta gamma=0`

Answer» Here, `A = [[alpha, beta],[gamma, -alpha]]`
We are given, `A^2 = I`
`:. [[alpha, beta],[gamma, -alpha]] [[alpha, beta],[gamma, -alpha]] = [[1,0],[0,1]]`
`=>[[alpha^2+betagamma, alphabeta -alphabeta],[gammaalpha-gammaalpha, betagamma+alpha^2]] = [[1,0],[0,1]]`
`=> alpha^2+betagamma = 1`
`=>1-alpha^2-betagamma = 0`


Discussion

No Comment Found

Related InterviewSolutions