1.

If `A=[alphabetagamma-alpha]`is such that `A^2=I`, then`1+alpha^2+betagamma=0`(b) `1-alpha^2+betagamma=0`(c) `1-alpha^2-betagamma=0`(d) `1+alpha^2-betagamma=0`A. `1+alpha^(2)+betagamma =0`B. `1-alpha^(2) +beta gamma =0`C. `1-alpha^(2)-beta gamma=0`D. `1+alpha^(2)-beta gamma =0`

Answer» Correct Answer - A
`A^(2) =I`
`implies [{:(alpha,beta),(gamma,-alpha):}][{:(alpha,beta),(gamma,-alpha):}]=I`
`implies[{:(alpha^(2)+betagamma,alphabeta-betaalpha),(gammaalpha -alphagamma,betagamma +alpha^(2)):}]=I`
`implies [{:(alpha^(2) +beta gamma ,0),(0, alpha^(2) +betagamma ):}]=[{:(1,0),(0,1):}]`
`alpha^(2) +beta gamma =1 implies 1-alpha^(2) -betagamma =0`


Discussion

No Comment Found

Related InterviewSolutions