InterviewSolution
Saved Bookmarks
| 1. |
If `A` and `B` are different matrices satisfying `A^(3) = B^(3)` and `A^(2) B = B^(2) A`, thenA. det `(A^(3) = B^(3))` must be zeroB. det `(A-B)` must be zeroC. det `(A^(3) = B^(3))` as well as det (A - B) must be zeroD. alteast one of det `(A^(3) = B^(3))` or det (A - B) must be zero |
|
Answer» Correct Answer - D `because A^(3) - A^(2) B = B^(3) - B^(2) A ` `rArr A^(2) (A-B) = B^(2)(B-A)` or `(A^(2) + B^(2)) (A-B) =0` or det `(A^(2)+B^(2)) cdot det (A-B) = 0` Either det `(A^(2) + B^(2)) = 0` or det `(A-B) = 0` |
|