1.

If a and b are positive integral numbers and each of the equations x2 + ax + 2b = 0, and x2 + 2bx + a=0 have real roots, then the smallest possible value of (a + b) is​

Answer»

a and b are positive integral numbers and each of the equations x2 + ax + 2b = 0, and x² + 2bx + a=0 have REAL roots, To Find : smallest possible value  of (a + b) is​Solution:x²  + ax + 2b = 0Real rootsif  a² - 4(1)(2b)  ≥ 0=> a² -  8b  ≥ 0=> a²     ≥  8bx² + 2bx + a=0Real rootsif  (2b)² - 4(1)(a)  ≥ 0=> 4b² - 4a  ≥ 0=> b² - a  ≥ 0=> b²   ≥   a => b   ≥   √a a²     ≥  8b=> a²     ≥  8√aSquaring both sides=> a⁴  ≥  64A=> a³   ≥  64=>  a³   ≥  4³=> a  ≥ 4b²   ≥   a  => b ≥ 2a  ≥ 4 , b ≥ 2Smallest possible value of a + b = 4 + 2 = 6 smallest possible value  of (a + b) is​  6Learn More:Show that the roots of equation (XA)(xb) = abx^2; a,b belong R are ... brainly.in/question/21009259if alpha +BETA are the roots of equation 4x²-5x+2=0 find the equation ... brainly.in/question/8333453



Discussion

No Comment Found

Related InterviewSolutions