

InterviewSolution
Saved Bookmarks
1. |
If A and B are square matrices of same order such that `AB=O` and `B ne O`, then prove that `|A|=0`. |
Answer» We have `AB=O` `:. |AB|=0` `implies |A||B|=0` `implies |A|=0` or `|B|=0` Now, let `|A| ne 0`, then `A^(-1)` exists. Thus, from `AB=O`, `A^(-1) AB=A^(-1)O` `:. IB=O` or `B=O` But it is given that `B ne O`, then `|A|=0`. |
|