

InterviewSolution
Saved Bookmarks
1. |
If A and B are square matrices of the same order such that AB = BA, then prove by induction that ABn = BnA. Further, prove that (AB)n = AnBn for all n ∈ N. |
Answer» (i) Let P(n) be the statement P(n) ⇒ Abn = BnA P(1) ⇒ AB = BA ∴ P( 1) is true Let P(k) be true P(k) ⇒ ABk = BkA P(k +1) ⇒ ABk+1 = A(BkB) = (ABk)B ∵ matrix multiplication is associative. ⇒ (BkA) B ⇒ Bk (AB) = Bk (BA) = (BkB) A = Bk+1 A Hence P(k + 1) is true. ∴ P(n) is true for all the values of n ∈ N (ii) Let P(n) be the statement P(n) ⇒ (AB)n = AnBn P(1) = (AB)1 = AB ∴ P(1) is true Let P(k) be true P(k) ⇒ (AB)k = AkBkP(k+1) ⇒ (AB)k+1 = (AB)kAB = (AkBk) AB = Ak (BkA)B = Ak (ABk) B (∵ ABn = BnA whenever Ab = BA) = Ak+1 Bk+1 ∴ P (k+1) is true Hence P(n) is true for all the natures of n ∈ N |
|