1.

If A and B are symmetric matrices of the same order, write whether AB – BA is symmetric or skew-symmetric or neither of the two.

Answer»

A and B are symmetric matrices, 

∴ A’ = A and B’ = B …(i) 

Consider,

(AB – BA)’ = (AB)’ – (BA)’ [(a – b)’ = a’ – b’] 

= B’A’ – A’B’ [(AB)’ = B’A’] 

= BA – AB [from (i)] 

= - (AB – BA) 

∴ (AB – BA)’ = - (AB – BA) 

Hence, 

(AB – BA) is a skew symmetric matrix.



Discussion

No Comment Found

Related InterviewSolutions