1.

If A and B are two sets having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A x B) and n[(A x B)∩ (B x A)].

Answer»

Given: (A) = 5 and n(B) = 4 

To find: [(A × B) ∩ (B×A)] 

n (A × B) = n(A) × n(B) = 5 x 4 = 20 

n (A ∩ B) = 3 

(given: A and B has 3 elements in common) 

In order to calculate n [(A × B) ∩ (B × A)], 

We will assume,

A = (x, x, x, y, z) and B = (x, x, x, p) 

So, we have 

(A × B) = {(x, x), (x, x), (x, x), (x, p), (x, x), (x, x), (x, x), (x, p), (x, x), (x, x), (x, x), (x, p), (y, x), (y, x), (y, x), (y, p), (z, x), (z, x), (z, x), (z, p)} 

(B × A) = {(x, x), (x, x), (x, x), (x, y), (x, z), (x, x), (x, x), (x, x), (x, y), (x, z), (x, x), (x, x), (x, x), (x, y), (x, z), (p, x), (p, x), (p, x), (p, y), (p, z)} 

[(A × B) ∩ (B × A)] = {(x, x), (x, x), (x, x), (x, x), (x, x), (x, x), (x, x), (x, x), (x, x)} 

∴ We can say that n [(A × B) ∩ (B × A)] = 9



Discussion

No Comment Found

Related InterviewSolutions