

InterviewSolution
Saved Bookmarks
1. |
If `(A+B)^(2)=A^(2)+B^(2)` and `|A| ne 0` , then `|B|=` (where `A` and `B` are matrices of odd order)A. `2`B. `-2`C. `1`D. `0` |
Answer» Correct Answer - D `(d)` `(A+B)^(2)=A^(2)+B^(2)` `impliesAB+BA=0` `impliesAB=-BA` `implies|AB|=|-BA|` `implies|A||B|=-|B||A|` (`A` and `B` are odd ordered matices) `implies|B|=-|B|(|A|=2)` `implies|B|=0` |
|