1.

If `(A+B)^(2)=A^(2)+B^(2)` and `|A| ne 0` , then `|B|=` (where `A` and `B` are matrices of odd order)A. `2`B. `-2`C. `1`D. `0`

Answer» Correct Answer - D
`(d)` `(A+B)^(2)=A^(2)+B^(2)`
`impliesAB+BA=0`
`impliesAB=-BA`
`implies|AB|=|-BA|`
`implies|A||B|=-|B||A|` (`A` and `B` are odd ordered matices)
`implies|B|=-|B|(|A|=2)`
`implies|B|=0`


Discussion

No Comment Found

Related InterviewSolutions