1.

If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22\(\frac{1}{2}\).

Answer»

Given A + B = 45° 

tan (A + B) = tan 45°

\(\frac{tanA+tanB}{1-tanAtanB}\) = 1

tan A + tan B = 1 – tan A.tan B 

tan A + tan B + tan A tan B = 1

Add 1 on both sides we get, 

(1 + tan A) + tan B + tan A tan B = 2 

1(1+ tan A) + tan B (1 + tan A) = 2 

(1 + tan A) (1 + tan B) = 2 … (1) 

Put A = B = 22\(\frac{1}{2}\) in (1) we get 

(1 + tan 22\(\frac{1}{2}\)) (1 + tan 22\(\frac{1}{2}\)) = 2 

⇒ (1 + tan 22\(\frac{1}{2}\))2 = 2 

⇒ 1 + tan 22\(\frac{1}{2}\) = ±√2 

⇒ tan 22\(\frac{1}{2}\) = ±√2 – 1 

Since 22\(\frac{1}{2}\) is acute, tan 22\(\frac{1}{2}\) is positive and 

Therefore tan 22\(\frac{1}{2}\) = √2 – 1 



Discussion

No Comment Found