1.

If A + B = 90° and Sin A = 3/5 find the value of tan B1. 3/42. 4/33. - 3/44. - 4/3

Answer» Correct Answer - Option 2 : 4/3

Given:

A + B = 90° and SinA = 3/5 

Concept Used:

Sinθ = Perpendicular/Hypotenuse

tanθ = Perpendicular/Base

Hypotenuse2 = Perpendicular2 + Base2

tan(90° - θ) = cotθ 

Calculation:

SinA = 3/5 = Perpendicular/Hypotenuse

⇒ Perpendicular = 3k and Hypotenuse = 5k  [Where, k is a constant]

Base = √(Hypotenuse2 - Perpendicular)

⇒ Base = √(5k)2 - (3k)2

⇒ Base = 4k

tanA = Perpendicular/Base

⇒ tanA = 3k/4k = 3/4

⇒ tan(90° - B) = 3/4

⇒ cotB = 3/4

⇒ tanB = 4/3

∴ tanB = 4/3



Discussion

No Comment Found

Related InterviewSolutions