InterviewSolution
Saved Bookmarks
| 1. |
If a, b and c are in G.P and x and y, respectively , be arithmetic means between a,b and b,c thenA. `a/x+c/y=2`B. `a/x+c/y=c/a`C. `1/x +1/y=2/b`D. `1/x+1/y=2/ac` |
|
Answer» Correct Answer - A::C a,b,c are in G.P. Hence, `b^(2)=ac` (1) x is A.M. of a and b. Hence, 2x=a+b (2) y is A.M. of b and c. Hence, 2y=b+c (3) `thereforea/x+c/y=axx2/(a+b)+cxx2/(b+c)` [Using (2) and (3)] `=2[(ab+ac+ac+bc)/(ab+ac+b^(2)+bc)]` =2 [Using (1)] Again, `1/x+1/y=2/(a+b)+2/(b+c)` `=(2(a+c+2b))/(ab+ac+b^(2)+bc)` `=(2(a+c+2b))/(ab+2b^(2)+bc) (becauseb^(2)=ac)` `=(2(a+c+2b))/(b(a+c+2b))=2/b` |
|