Saved Bookmarks
| 1. |
If A, B are square materices of same order and B is a skewsymmetric matrix, show that `A^(T)BA` is skew-symmetric. |
|
Answer» Matric B is skew-symmetric `:. B^(T)=-B` Now, `(A^(T)BA)^(T)=A^(T)B^(T) (A^(T))^(T)" "("as "(AB)^(T)=B^(T)A^(T))` `=A^(T)(-B)A` `=-A^(T) BA` Hence, `A^(T)BA` is a skew-symmetric matrix. |
|