1.

If A, B are square materices of same order and B is a skewsymmetric matrix, show that `A^(T)BA` is skew-symmetric.

Answer» Matric B is skew-symmetric
`:. B^(T)=-B`
Now, `(A^(T)BA)^(T)=A^(T)B^(T) (A^(T))^(T)" "("as "(AB)^(T)=B^(T)A^(T))`
`=A^(T)(-B)A`
`=-A^(T) BA`
Hence, `A^(T)BA` is a skew-symmetric matrix.


Discussion

No Comment Found

Related InterviewSolutions