1.

if A, B are square matrices of the same order, then prove that adj (AB) = (adj B) (adj A).

Answer»

We know that

(AB) adj(AB) = |AB| = adj(AB)(AB)  ..(i)

(AB)(adj B adj A)

= A.B adj B.adj A = A(B adj B) adj A

=A(|B|)adj A     [ :. B adj B = |B|I]

= |B|(A.adj A)

= |B| |A| I     [:. A adj A = |A|I]

= |A| |B| I

= |AB|I            ....(ii)

From (i) and (ii), we get

AB(adj AB) = AB(adj B.adj A)

Pre-multiplying both sides by(AB)-1,we get (AB)-1[(AB)adj AB]

= (AB)-1 [(AB)adj B.adj A]

or adj AB = adj B.adj A



Discussion

No Comment Found