1.

If (a – b), (b – c), (c – a) are in G.P., then prove that (a + b + c)2 = 3(ab + bc + ca)

Answer»

Given as (a – b), (b – c), (c – a) are in G.P

\(\therefore\) \(\frac{b-c}{a-b}\) = \(\frac{c-a}{b-c}\) = common ratio

⇒ (b – c)2 = (a – b)(c – a) 

As we have to prove :(a + b + c)2 = 3(ab + bc + ca) so we proceed as follows: 

⇒ b2 + c2 – 2bc = ac – a2 – bc + ab 

⇒ a2 + b2 + c2 = ac + ab + bc 

Add 2(ac + ab + bc) to both sides: 

⇒ a2 + b2 + c2 + 2(ac + ab + bc) = ac + ab + bc + 2(ac + ab + bc)

⇒ (a + b + c)2 = 3(ab + bc + ca) 

Hence Proved.



Discussion

No Comment Found