1.

If `a+b+c=24`, `a^(2)+b^(2)+c^(2)=210`, `abc=440`. Then the least value of `a-b-c` isA. `-2`B. `2`C. `8`D. `-14`

Answer» Correct Answer - D
`(d)` `ab+bc+ca=((a+b+c)^(2)-(a^(2)+b^(2)+c^(2)))/(2)=183`
Hence `a`, `b`, `c` are the roots of the equation.
`t^(3)-24t^(2)+183t-440=0`
`implies(t-5)(t-8)(t-11)=0`
Thus `{a,b,c}={5,8,11}`


Discussion

No Comment Found

Related InterviewSolutions