

InterviewSolution
Saved Bookmarks
1. |
let `alpha(a)` and `beta(a)` be the roots of the equation `((1+a)^(1/3)-1)x^2 +((1+a)^(1/2)-1)x+((1+a)^(1/6)-1)=0` where `agt-1` then, `lim_(a->0^+)alpha(a)` and `lim_(a->0^+)beta(a)`A. `(-5/2)` and 1B. `(-1/2)` and (1)C. `(-7/2)` and 2D. `(-9/2)` and 3 |
Answer» Correct Answer - D Let `a+1=h^(6)` `:.(h^(2)-1)x^(2)+(h^(3)-1)x+(h-1)=0` `implies((h^(2)-1)/(h-1))x^(2)+((h^(3)-1)/(h-1))x+1=0` As `ato0` then `hto1` `lim_(hto1)((h^(2)-1)/(h-1))x^(2)+lim_(hto1)((h^(3)-1)/(h-1))x+1=0` `implies2x^(2)+3x+1=0` `implies2x^(2)+2x+x+1=0` `implies(2x+1)(x+1)=0` `:.x=-1` and `x=-1/2` |
|