

InterviewSolution
Saved Bookmarks
1. |
Let `alpha`, `beta (a lt b)` be the roots of the equation `ax^(2)+bx+c=0`. If `lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1` thenA. `(|a|)/(a)=-1`, `m lt alpha`B. `a gt 0`, `alpha lt m lt beta`C. `(|a|)/(a)=1`, `m gt beta`D. `a lt 0`, `m gt beta` |
Answer» Correct Answer - C `(c )` According to the given condition, we have `|am^(2)+bm+c|=am^(2)+bm+c` i.e., `am^(2)+bm+c gt 0` `implies` if `a lt 0` , then `m` lies in `(alpha,beta)` and if `a gt 0`, then `m` does not lie in `(alpha,beta)` Hence, option `(c )` is correct, since `(|a|)/(a)=1impliesa gt 0` and in that case `m` does not lie in `(alpha,beta)`. |
|