InterviewSolution
Saved Bookmarks
| 1. |
If `a +b+c = alphad, b+c+d=beta a and a, b, c` are non-coplanar, then the sum of `a +b+c+d =` |
|
Answer» Correct Answer - A We have, `a+b+c =alphad` and b+c+d=`beta a` `therefore a+b+c+d=(alpha+1)d` and `a+b+c+d=(beta+1)a` `implies (alpha+1)d=(beta+1)a` if `alphane-1`, then `(alpha+1)d=(beta+1)a` `implies d=(beta+1)/(alpha+1)a` `implies a+b+c=alphad` `implies a+b+c=alpha((beta+1)/(alpha+1))a` `implies[1-(alpha(beta+1))/(alpha+1)]a+b+c=0`. a,b and c are coplanar which is contradiction to the given condition. `therefore alpha=-1` and so a+b+c+d=0. |
|