InterviewSolution
Saved Bookmarks
| 1. |
If `a , b , c`are in A.P. `b , c , d`are in G.P. and `1/c ,1/d ,1/e`are in A.P. prove that `a , c , e`are in G.P.?A. a,c,e are in G.P.B. a,b,e are in G.P.C. a,b,e are in G.P.D. a,c,e are in G.P. |
|
Answer» Correct Answer - A It si given that : a,b,c are in A.P. `rArr2b=a+c` . . .(i) b,c,d are in G.P. `rArrc^(2)=bd` . . .(ii) `(1)/(c),(1)/(d),(1)/(e)` are in A.P. `rArr(2)/(d)=(1)/(c)+(1)/(e)rArrd=(2ce)/(c+e)` . . .(iii) From (ii) and (iii), we obtain `c^(2)=b((2ce)/(c+e))" [On eliminating d]"` `rArr" "2be=c^(2)+ce` `rArr" "(a+c)e=c^(2)+ce` `rArr" "c^(2)=ae" [Using (i)]` `rArr" "a,c,e,` are in G.P. |
|