1.

If a, b, c are in G.P., prove that : (a2 – b2), (b2 – c2), (c2 – d2) are in G.P.

Answer»

a, b, c, d are in G.P. Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

To prove: (a2 – b2), (b2 – c2), (c2 – d2) are in G.P, we need to prove that: 

(a2 – b2) (c2 – d2) = (b2 – c2)2 {deduced using GM relation} 

∴ RHS = (b2 – c2)2 

= b4 + c4 – 2b2c2 

= a2c2 + b2d2 – a2d2 – b2c2 {using equation 2 and 3} 

= c2(a2 – b2) – d2(a2 – b2

= (a2 – b2) (c2 – d2) = LHS 

∴ (a2 – b2), (b2 – c2), (c2 – d2) are in G.P

Hence proved.



Discussion

No Comment Found