1.

If a, b, c are in G.P., prove that : (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.

Answer»

As, 

a, b, c, d are in G.P, let r be the common ratio. 

Therefore, 

b = ar … (1) 

c = ar2 … (2) 

d = ar3 … (3) 

If we show that: (ab + bc + cd)2 = (a2 + b2 + c2) (b2 + c2 + d2

we can say that: 

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P 

As, (ab + bc + cd)2 = (a2r + a2r3 + a2r5)2 

⇒ (ab + bc + cd)2 = a4r2(1 + r2 + r4)2 …(4) 

As, 

(a2 + b2 + c2)( b2 + c2 + d2) = (a2 + a2r2 + a2r4)(a2r2 + a2r4 + a2r6

⇒ (a2 + b2 + c2)( b2 + c2 + d 2) = a4r2(1 + r2 + r4)(1 + r2 + r4

⇒ (a2 + b2 + c2)( b2 + c 2 + d2) = a4r2(1 + r2 + r4)2 …(5) 

From equation 4 and 5, we have: 

(ab + bc + cd)2 = (a2 + b2 + c2)(b2 + c2 + d2

Hence, 

We can say that (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.



Discussion

No Comment Found