InterviewSolution
| 1. |
If a, b, c are in G.P., prove that : (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P. |
|
Answer» As, a, b, c, d are in G.P, let r be the common ratio. Therefore, b = ar … (1) c = ar2 … (2) d = ar3 … (3) If we show that: (ab + bc + cd)2 = (a2 + b2 + c2) (b2 + c2 + d2) we can say that: (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P As, (ab + bc + cd)2 = (a2r + a2r3 + a2r5)2 ⇒ (ab + bc + cd)2 = a4r2(1 + r2 + r4)2 …(4) As, (a2 + b2 + c2)( b2 + c2 + d2) = (a2 + a2r2 + a2r4)(a2r2 + a2r4 + a2r6) ⇒ (a2 + b2 + c2)( b2 + c2 + d 2) = a4r2(1 + r2 + r4)(1 + r2 + r4) ⇒ (a2 + b2 + c2)( b2 + c 2 + d2) = a4r2(1 + r2 + r4)2 …(5) From equation 4 and 5, we have: (ab + bc + cd)2 = (a2 + b2 + c2)(b2 + c2 + d2) Hence, We can say that (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P. |
|