1.

If a, b, c are in G.P., prove that : \(\frac{1}{a^2 + b^2}, \frac{1}{b^2 +c^2}, \frac{1}{c^2 + d^2}\) are in G.P

Answer»

a, b, c, d are in G.P. Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3)

To prove: \(\frac{1}{a^2 + b^2}\)\(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\) are in G.P, we need to prove that:

\(\frac{1}{(c^2 + d^2)(a^2 + b^2)}\) = \(\frac{1}{(b^2 + c^2)^2}\) {deduced using GM relation}

Or, (b2 + c2)2 = (a2 + b2)(c2 + d2

Take LHS and proceed to prove 

LHS = (b2 + c2)2 

= b4 + c4 + 2b2c2 

= a2c2 + b2d2 + a2d2 + b2c2 {using equation 2 and 3} 

= c2(a 2 + b2) + d2(a2 + b2

= (a2 + b2) (c2 + d2) = RHS

\(\therefore\)  \(\frac{1}{a^2 + b^2}\)\(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\)  are in GP

Hence proved



Discussion

No Comment Found