InterviewSolution
| 1. |
If a, b, c are in G.P., prove that : \(\frac{1}{a^2 + b^2}, \frac{1}{b^2 +c^2}, \frac{1}{c^2 + d^2}\) are in G.P |
|
Answer» a, b, c, d are in G.P. Therefore, bc = ad … (1) b2 = ac … (2) c2 = bd … (3) To prove: \(\frac{1}{a^2 + b^2}\), \(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\) are in G.P, we need to prove that: \(\frac{1}{(c^2 + d^2)(a^2 + b^2)}\) = \(\frac{1}{(b^2 + c^2)^2}\) {deduced using GM relation} Or, (b2 + c2)2 = (a2 + b2)(c2 + d2) Take LHS and proceed to prove LHS = (b2 + c2)2 = b4 + c4 + 2b2c2 = a2c2 + b2d2 + a2d2 + b2c2 {using equation 2 and 3} = c2(a 2 + b2) + d2(a2 + b2) = (a2 + b2) (c2 + d2) = RHS \(\therefore\) \(\frac{1}{a^2 + b^2}\), \(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\) are in GP Hence proved |
|