InterviewSolution
| 1. |
If a, b, c are in G.P., prove that:(i) a(b2 + c2) = c(a2 + b2)(ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3(iii) (a+b+c)2 / (a2 + b2 + c2) = (a+b+c) / (a-b+c)(iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2)(v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2 |
|
Answer» (i) a(b2 + c2) = c(a2 + b2) Given that a, b, c are in GP. By using the property of geometric mean, b2 = ac Let us consider LHS: a(b2 + c2) Now, substituting b2 = ac, we get a(ac + c2) a2c + ac2 c(a2 + ac) Substitute ac = b2 we get, c(a2 + b2) = RHS ∴ LHS = RHS Hence proved. (ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3 Given that a, b, c are in GP. By using the property of geometric mean, b2 = ac Let us consider LHS: a2b2c2 [1/a3 + 1/b3 + 1/c3] a2b2c2/a3 + a2b2c2/b3 + a2b2c2/c3 b2c2/a + a2c2/b + a2b2/c (ac)c2/a + (b2)2/b + a2(ac)/c [by substituting the b2 = ac] ac3/a + b4/b + a3c/c c3 + b3 + a3 = RHS ∴ LHS = RHS Hence proved. (iii) (a + b + c)2 / (a2 + b2 + c2) = (a + b + c) / (a - b + c) Given that a, b, c are in GP. By using the property of geometric mean, b2 = ac Let us consider LHS: (a + b + c)2 / (a2 + b2 + c2) (a + b + c)2 / (a2 + b2 + c2) = (a + b + c)2 / (a2 – b2 + c2 + 2b2) = (a + b + c)2 / (a2 – b2 + c2 + 2ac) [Since, b2 = ac] = (a + b + c)2 / (a + b + c)(a - b + c) [Since, (a + b + c)(a - b + c) = a2 – b2 + c2 + 2ac] = (a + b + c) / (a - b + c) = RHS ∴ LHS = RHS Hence proved. (iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2) Given that a, b, c are in GP. By using the property of geometric mean, b2 = ac Let us consider LHS: 1/(a2 – b2) + 1/b2 Let us take LCM 1/(a2 – b2) + 1/b2 = (b2 + a2 – b2)/(a2 – b2)b2 = a2 / (a2b2 – b4) = a2 / (a2b2 – (b2)2) = a2 / (a2b2 – (ac)2) [Since, b2 = ac] = a2 / (a2b2 – a2c2) = a2 / a2(b2 – c2) = 1/ (b2 – c2) = RHS ∴ LHS = RHS Hence proved. (v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2 Given that a, b, c are in GP. By using the property of geometric mean, b2 = ac Let us consider LHS: (a + 2b + 2c) (a – 2b + 2c) Upon expansion we get, (a + 2b + 2c) (a – 2b + 2c) = a2 – 2ab + 2ac + 2ab – 4b2 + 4bc + 2ac – 4bc + 4c2 = a2 + 4ac – 4b2 + 4c2 = a2 + 4ac – 4(ac) + 4c2 [Since, b2 = ac] = a2 + 4c2 = RHS ∴ LHS = RHS Hence proved. |
|