1.

If a, b, c are in G.P., prove that:(i) a(b2 + c2) = c(a2 + b2)(ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3(iii) (a+b+c)2 / (a2 + b2 + c2) = (a+b+c) / (a-b+c)(iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2)(v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2

Answer»

(i) a(b2 + c2) = c(a2 + b2)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: a(b2 + c2)

Now, substituting b2 = ac, we get

a(ac + c2)

a2c + ac2

c(a2 + ac)

Substitute ac = b2 we get,

c(a2 + b2) = RHS

∴ LHS = RHS

Hence proved.

(ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: a2b2c2 [1/a3 + 1/b3 + 1/c3]

a2b2c2/a3 + a2b2c2/b3 + a2b2c2/c3

b2c2/a + a2c2/b + a2b2/c

(ac)c2/a + (b2)2/b + a2(ac)/c [by substituting the b2 = ac]

ac3/a + b4/b + a3c/c

c3 + b3 + a3 = RHS

∴ LHS = RHS

Hence proved.

(iii) (a + b + c)2 / (a2 + b2 + c2) = (a + b + c) / (a - b + c)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: (a + b + c)2 / (a2 + b2 + c2)

(a + b + c)2 / (a2 + b2 + c2) = (a + b + c)2 / (a2 – b2 + c2 + 2b2)

= (a + b + c)2 / (a2 – b2 + c2 + 2ac) [Since, b2 = ac]

= (a + b + c)2 / (a + b + c)(a - b + c) [Since, (a + b + c)(a - b + c) = a2 – b2 + c2 + 2ac]

= (a + b + c) / (a - b + c)

= RHS

∴ LHS = RHS

Hence proved.

(iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: 1/(a2 – b2) + 1/b2

Let us take LCM

1/(a2 – b2) + 1/b2 = (b2 + a2 – b2)/(a2 – b2)b2

= a/ (a2b2 – b4)

= a2 / (a2b2 – (b2)2)

= a2 / (a2b2 – (ac)2) [Since, b2 = ac]

= a2 / (a2b2 – a2c2)

= a2 / a2(b2 – c2)

= 1/ (b2 – c2)

= RHS

∴ LHS = RHS

Hence proved.

(v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: (a + 2b + 2c) (a – 2b + 2c)

Upon expansion we get,

(a + 2b + 2c) (a – 2b + 2c) = a2 – 2ab + 2ac + 2ab – 4b2 + 4bc + 2ac – 4bc + 4c2

= a2 + 4ac – 4b2 + 4c2

= a2 + 4ac – 4(ac) + 4c2 [Since, b2 = ac]

= a2 + 4c2

= RHS

∴ LHS = RHS

Hence proved.



Discussion

No Comment Found