1.

If a, b, c are in G.P., prove that the following are also in G.P. : a2 + b2, ab + bc, b2 + c2

Answer»

a, b, c are in G.P 

Therefore 

b2 = ac … (1) 

We have to prove a2 + b2, ab + bc, b2 + c2 are in GP or we need to prove: 

(ab + bc)2 = (a2 + b2).(b2 + c2) {using GM} Take LHS and proceed: 

⇒ LHS = (ab + bc)2 = a2b2 + 2ab2c + b2c2 

∵ b2 = ac 

⇒ LHS = a2b2 + 2b2(b2) + b2c2 

⇒ LHS = a2b2 + 2b4 + b2c2 

⇒ LHS = a2b2 + b4 + a2c2 + b2c2 {again using b2 = ac } 

⇒ LHS = b2(b2 + a2) + c2(a2 + b2

⇒ LHS = (a2 + b2)(b2 + c2) = RHS 

Hence a2 + b2, ab + bc, b2 + c2 are in GP.



Discussion

No Comment Found