InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c are in G.P., prove that the following are also in G.P. : a2 + b2, ab + bc, b2 + c2 |
|
Answer» a, b, c are in G.P Therefore b2 = ac … (1) We have to prove a2 + b2, ab + bc, b2 + c2 are in GP or we need to prove: (ab + bc)2 = (a2 + b2).(b2 + c2) {using GM} Take LHS and proceed: ⇒ LHS = (ab + bc)2 = a2b2 + 2ab2c + b2c2 ∵ b2 = ac ⇒ LHS = a2b2 + 2b2(b2) + b2c2 ⇒ LHS = a2b2 + 2b4 + b2c2 ⇒ LHS = a2b2 + b4 + a2c2 + b2c2 {again using b2 = ac } ⇒ LHS = b2(b2 + a2) + c2(a2 + b2) ⇒ LHS = (a2 + b2)(b2 + c2) = RHS Hence a2 + b2, ab + bc, b2 + c2 are in GP. |
|