InterviewSolution
Saved Bookmarks
| 1. |
If `a ,b ,c`are nonzero complex numbers of equal moduli and satisfy `a z^2+b z+c=0,`hen prove that `(sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.` |
|
Answer» `|a| = |b| = |c| = r ` Again ` az^(2) + bz = - c ` ` rArr |c| = |-az^(2) - bz| le |a||z^(2)| + |b| |z| ` ` rArr r le r |z|^(2) + r |z| ` ` rArr |z|^(2) + |z| - 1 ge 0 ` ` rArr |z| ge (sqrt5 - 1 )/( 2 ) " " (1)` Also from ` a z ^(2) = - bz - c,` `|z|^(2) - |z| - 1 le 0 ` ` rArr 0 lt |z| le (sqrt5 + 1 )/(2) " " ` (2) From (1) and (2) , ` (sqrt5 - 1 )/(2) le |z| le (sqrt 5 + 1 )/( 2 )` |
|