InterviewSolution
| 1. |
If a, b, c are the lengths of the sides of a non-equilateral triangle, then \(\frac1{a^2}+\frac1{b^2}+\frac1{c^2}\) is(a) > \(\frac{s}{a+b+c}\)(b) > \(\frac{2s}{abc}\)(c) < \(\frac{2s}{abc}\) (d) None of these, where s = \(\frac{a+b+c}{2}\). |
|
Answer» (b) > \(\frac{2s}{abc}\) a > 0, b > 0, c > 0 ⇒ ab > 0, bc > 0, ca > 0 ∴ \(\frac{(ab)^2+(bc)^2}{2}\) > \(\big((ab)^2(bc)^2\big)^{\frac12}\) ⇒ a2b2 + b2c2 > 2 (a2b4c2)\(\frac12\) ⇒ a2b2 + b2c2 > 2 (abc).b …(i) Similarly, b2c2 + c2a2 > 2 (abc).c …(ii) c2a2 + a2b2 > 2(abc)a …(iii) (i) + (ii) + (iii) ⇒ 2(a2b2 + b2c2 + c2a2) > 2 abc (a + b + c) ⇒ a2b2 + b2c2 + c2a2 > abc (a + b + c) Dividing both sides by a2b2c2, we have ⇒ \(\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}\) > \(\frac{a+b+c}{abc}\) ⇒ \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) > \(\frac{2s}{abc}\) ⇒ \(\frac{2s}{abc}\) < \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\). |
|