1.

If a, b, c are the lengths of the sides of a non-equilateral triangle, then \(\frac1{a^2}+\frac1{b^2}+\frac1{c^2}\) is(a) > \(\frac{s}{a+b+c}\)(b)  > \(\frac{2s}{abc}\)(c) < \(\frac{2s}{abc}\) (d) None of these, where s = \(\frac{a+b+c}{2}\).

Answer»

(b) > \(\frac{2s}{abc}\)

a > 0, b > 0, c > 0 ⇒ ab > 0, bc > 0, ca > 0 

\(\frac{(ab)^2+(bc)^2}{2}\) > \(\big((ab)^2(bc)^2\big)^{\frac12}\)

⇒ a2b2 + b2c2 > 2 (a2b4c2)\(\frac12\) 

⇒ a2b2 + b2c2 > 2 (abc).b             …(i) 

Similarly, b2c2 + c2a2 > 2 (abc).c           …(ii) 

c2a2 + a2b2 > 2(abc)a           …(iii) 

(i) + (ii) + (iii) 

⇒ 2(a2b2 + b2c2 + c2a2) > 2 abc (a + b + c) 

⇒ a2b2 + b2c2 + c2a2 > abc (a + b + c)

Dividing both sides by a2b2c2, we have

⇒ \(\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}\) > \(\frac{a+b+c}{abc}\)

⇒ \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) > \(\frac{2s}{abc}\)

⇒ \(\frac{2s}{abc}\) <  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\).



Discussion

No Comment Found

Related InterviewSolutions