InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c are the sides of a non-equilateral triangle, then the expression (b + c – a) (c + a – b) (a + b – c) – abc is(a) negative (b) non-negative (c) positive (d) non-positive |
|
Answer» (a) negative Let x = b + c – a, y = c + a – b, z = a + b – c Since a, b, c are the sides of a non-equilateral triangle, by the triangle inequality a + b > c, b + c > a, c + a > b ⇒ a + b – c > 0, b + c – a > 0, c + a – b > 0 ⇒ z > 0, x > 0, y > 0 Also, x, y, z are distinct. ∴ AM > GM \(c=\frac{x+y}{2}>\sqrt{xy}\) \(b=\frac{x+z}{2}>\sqrt{xz}\) \(a=\frac{y+z}{2}>\sqrt{yz}\) ∴ abc > \(\sqrt{xy}.\sqrt{xz}.\sqrt{yz}\) ⇒ abc > xyz ⇒ abc > (b + c – a) (c + a – b) (a + b – c) ⇒ (b + c – a) (c + a – b) (a + b – c) – abc < 0, i.e., negative. |
|