InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x < – 1 or x > 3. |
|
Answer» Let a be the first term of GP with r being the common ratio. ∴ b = ar …(1) c = ar2 …(2) Given, (a + b + c) = xb ⇒ (a + ar + ar2) = x(ar) ⇒ a(1 + r + r2) = ar ⇒ (1 + r + r2) = xr ⇒ r2 + (1 – x)r + 1 = 0 As r is a real number ⇒ Both solutions are real. So discriminant of the given quadratic equation D ≥ 0 As, D ≥ 0 ⇒ (1 – x)2 – 4(1)(1) ≥ 0 ⇒ x2 – 2x – 3 ≥ 0 ⇒ (x – 1)(x – 3) ≥ 0 ∴ x < – 1 or x > 3 …proved |
|