1.

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x < – 1 or x > 3.

Answer»

Let a be the first term of GP with r being the common ratio. 

∴ b = ar …(1) 

c = ar2 …(2) 

Given, (a + b + c) = xb 

⇒ (a + ar + ar2) = x(ar) 

⇒ a(1 + r + r2) = ar 

⇒ (1 + r + r2) = xr 

⇒ r2 + (1 – x)r + 1 = 0 

As r is a real number ⇒ Both solutions are real. 

So discriminant of the given quadratic equation 

D ≥ 0 As, D ≥ 0 

⇒ (1 – x)2 – 4(1)(1) ≥ 0 

⇒ x2 – 2x – 3 ≥ 0 

⇒ (x – 1)(x – 3) ≥ 0 

∴ x < – 1 or x > 3 …proved



Discussion

No Comment Found