InterviewSolution
Saved Bookmarks
| 1. |
If `a ,b ,c ,d`are in A.P. and `x , y , z`are in G.P., then show that `x^(b-c)doty^(c-a)dotz^(a-b)=1.` |
|
Answer» Let `D` is the common difference in the given A.P. Then, `b-a = D, c-b = D, d-c = D` `:. b-c = -D, c-a = 2D,a-b = -D` As, `x,y and z` are in G.P. `:. y^2 = zx` Now, `x^(b-c)*y^(c-a)*z^(a-b) = x^(-D)*y^(2D)*z^(-D)` `= (1/(zx))^D*(y^2)^D` `=(y^2/(zx))^D` `=((zx)/(zx))^D...[ `As ` y^2 = zx]` `=1^D = 1` `:. x^(b-c)*y^(c-a)*z^(a-b) = 1` |
|