1.

If `a ,b ,c`are in G.P., then prove that `loga^n ,logb^n ,logc^n`are in A.P.

Answer» Here, `a,b and c` are in G.P.
`:. b^2 = ac`
Taking log both sides,
`log(b^2) = log(ac)`
`=>2logb = loga+logc`
`=>n*2logb = nloga+nlogc`
`=>2logb^n = loga^n+logc^n`
`:. loga^n,logb^n and logc^n` are in A.P.


Discussion

No Comment Found