InterviewSolution
| 1. |
If a, b, c, d are in G.P, prove that : (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2 |
|
Answer» a, b, c, d are in G.P. Therefore, bc = ad … (1) b2 = ac … (2) c2 = bd … (3) If somehow we use RHS and Make it equal to LHS, our job will be done. we can manipulate the RHS of the given equation as Note: Here we are manipulating RHS because working with a simpler algebraic equation is easier and this time RHS is looking simpler. RHS = (a + b)2 + 2(b + c)2 + (c + d)2 ⇒ RHS = a2 + b2 + 2ab + 2(c2 + b2 + 2cb) + c2 + d2 + 2cd ⇒ RHS = a2 + b2 + c2 + d2 + 2ab + 2(c2 + b2 + 2cb) + 2cd Put c2 = bd and b2 = ac, we get ⇒ RHS = a2 + b2 + c2 + d2 + 2(ab + ad + ac + cb + cd) You can visualize the above expression by making separate terms for (a + b + c)2 + d2 + 2d(a + b + c) = {(a + b + c) + d}2 ⇒ RHS = (a + b + c + d)2 = LHS Hence Proved. |
|