1.

If a, b, c, d are in G.P, prove that : (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2

Answer»

a, b, c, d are in G.P. 

Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

If somehow we use RHS and Make it equal to LHS, our job will be done. 

we can manipulate the RHS of the given equation as 

Note: Here we are manipulating RHS because working with a simpler algebraic equation is easier and this time RHS is looking simpler. 

RHS = (a + b)2 + 2(b + c)2 + (c + d)

⇒ RHS = a2 + b2 + 2ab + 2(c2 + b2 + 2cb) + c2 + d2 + 2cd 

⇒ RHS = a2 + b2 + c2 + d2 + 2ab + 2(c2 + b2 + 2cb) + 2cd

Put c2 = bd and b2 = ac, we get

⇒ RHS = a2 + b2 + c2 + d2 + 2(ab + ad + ac + cb + cd) 

You can visualize the above expression by making separate terms for (a + b + c)2 + d2 + 2d(a + b + c) = {(a + b + c) + d}2 

⇒ RHS = (a + b + c + d)2 = LHS 

Hence Proved.



Discussion

No Comment Found