InterviewSolution
Saved Bookmarks
| 1. |
If `a,b,c,in R^(+)`, such that `a+b+c=18`, then the maximum value of `a^2,b^3,c^4` is equal toA. `2^(18)xx3^(2)`B. `2^(18)xx3^3`C. `2^19 xx3^2`D. `2^19xx3^3` |
|
Answer» Correct Answer - D `a + b + c = 18` `implies 2 xx (a)/(2) + 3 xx (b)/(3) + 4 xx (c )/(4) = 18` Using weighted A.M and G.M inequality, we get `(2 xx (a)/(2) + 3 xx (b)/(3) + 4 xx (c )/(4))/(9) ge (((a)/(2))^(2) ((b)/(3))^(3) ((c )/(4))^(4))^(1//9)` or `2^(9) ge (a^(2))/(2^(2)) xx (b^(2))/(3^(3)) xx (c^(4))/(4^(4))` or ` a^(2) b^(3) c^(4) le 3^(3) xx 2^(19)` |
|